

Short Research Article

Study of activation cross sections of deuteron-induced reactions on erbium for applications †

F. TÁRKÁNYI^{1,*}, A. HERMANNE², S. TAKÁCS¹, F. DITRÓI¹, B. KIRÁLY¹, M. BABA³, T. OHTSUKI³, S. F. KOVALEV⁴ and A. V. IGNATYUK⁴

¹Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary

²Vrije Universiteit Brussel (VUB), Brussels, Belgium

³Tohoku University, Sendai, Japan

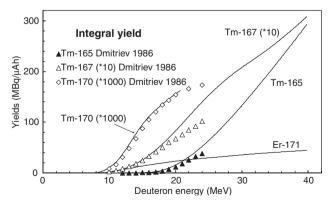
⁴Institute of Physics and Power Engineering, Obninsk, Russia

Keywords: ^{nat}Er target; deuteron-induced reaction; cross section; ^{165,169}Er and ^{167,170,171}Tm therapeutic radionuclides

Introduction

The use of compounds and biomolecules labeled with radionuclides of rare-earth elements is a fast growing field in therapeutic nuclear medicine. These radionuclides are currently produced by (n,γ) caption in a nuclear reactor, but to obtain high specific activity or end products at the no carrier added level, usually alternative production routes utilizing charged particle-induced processes are required.

Our systematic study of proton- and deuteroninduced nuclear reactions shows that it is worthwhile to investigate the deuteron-induced reactions because in the heavy mass region the (d,2n) process is more productive than the (p,n). Here, we report on the production of Tm and Er radioisotopes by (d,x) reactions on erbium target. Among the reaction products the ¹⁶⁵Tm \rightarrow ¹⁶⁵Er, ¹⁶⁹Er, ¹⁶⁷Tm, ¹⁷⁰Tm and ¹⁷¹Er \rightarrow ¹⁷¹Tm radionuclei have been gained interest in therapy.


Experimental

The excitation functions were measured by the stacked foil technique up to 40 MeV. Commercial Er foils were stacked with Ti and Al monitor foils.

Irradiations were done at the external beam of the cyclotrons of the VUB and of the Tohoku University. The measured $^{nat}Er(d,x)^{166,167}Ho$, $^{163,165,166,167,168,170,171}Tm$, $^{169,171}Er$ cross sections were compared to theoretical effective cross sections calculated by means of the computer code ALICE-IPPE. No experimental results were found in the literature for cross sections of deuteron-induced reactions on erbium.

Results and discussion

Thick target yields calculated from our fitted cross sections give reliable estimations for production of medically relevant radioisotopes of high radionuclide purity by using highly enriched mono-isotopic targets.

Figure 1 Integral yields of the 165,167,170 Tm and 171 Er calculated from the measured excitation functions.

^{*}Correspondence to: F. Tárkányi, Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary. E-mail: tarkanyi@atomki.hu

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

488 F. TÁRKÁNYI *ET AL.*

Isotope	Nuclear reactor	Cyclotron
¹⁶⁵ Er	$^{164}\mathrm{Er}(\mathrm{n},\gamma)^{165}\mathrm{Er}$ $\sigma_{\mathrm{th}}=13000\mathrm{mb}$ carrier added	¹⁶⁵ Ho(p,n) ¹⁶⁵ Er, $\sigma_{max} = 150 \text{ mb}$ ¹⁶⁵ Ho(d,2n) ¹⁶⁵ Er, $\sigma_{max} = 600 \text{ mb}$ ¹⁶⁶ Er(p,2n) ¹⁶⁵ Tm \rightarrow ¹⁶⁵ Er, $\sigma_{max} = 1200 \text{ mb}$ ¹⁶⁶ Er(d,3n) ¹⁶⁵ Tm \rightarrow ¹⁶⁵ Er, $\sigma_{max} = 320 \text{ mb}$ no carrier added
¹⁶⁹ Er	$egin{aligned} {}^{168}\mathrm{Er}(\mathrm{n},\gamma){}^{169}\mathrm{Er}\ \sigma_{\mathrm{th}} &= 2000~\mathrm{mb}\ \mathrm{carrier}\ \mathrm{added} \end{aligned}$	168 Er(d,p) 169 Er, $\sigma_{\rm max} = 300 {\rm mb}$ no carrier added
¹⁶⁷ Tm	168 Yb(n,2n) 167 Yb $\rightarrow ~^{167}$ Tm $\sigma_{14 \text{ MeV}} = 1900 \text{ mb}$ no carrier added	
¹⁷⁰ Tm	${ m ^{169}Tm}(n,\gamma)^{170}{ m Tm}$ $\sigma_{ m th}=105000{ m mb}$ carrier added	170 Er(p,n) ¹⁷⁰ Tm, $\sigma_{max} = 130 \text{ mb}$ 170 Er(d,2n) ¹⁷⁰ Tm, $\sigma_{max} = 120 \text{ mb}$ no carrier added
¹⁷¹ Tm	170 Er(n, γ) 171 Er \rightarrow 171 Tm $\sigma_{th} = 6000 \text{ mb}$ no carrier added	170 Er(d,n) ¹⁷¹ Tm, $\sigma_{max} = 10 \text{ mb}$ 170 Er(d,p) ¹⁷¹ Er $\rightarrow {}^{171}$ Tm, $\sigma_{max} = 300 \text{ mb}$ no carrier added

Table 1 Comparison of reactor and accelerator production of ^{167,170,171}Tm and ^{165,169}Er

The integral yields for 165,167,170 Tm and 171 Er calculated from the measured excitation functions are shown in Figure 1 in comparison with the directly measured data of Dmitriev.¹

The comparison of the cross section data of reactor and accelerator routes for ^{167,170,171}Tm and ^{165,169}Er is given in Table 1. The cross sections of proton-induced reactions in Table 1 were obtained from the available experimental data and by using the ALICE-IPPE code. According to Table 1 among the charged particleinduced reactions, the (p,2n) and (d,2n) reactions provide the highest yields.

¹⁶⁹Er and ¹⁷¹Tm can be produced at cyclotrons only by deuteron-induced reactions. The theoretical

description needs further improvements especially for (d,p) and (d,2n) reactions (breakup process). The total amount of 165,169 Er and 167,170,171 Tm produced at a nuclear reactor is significantly larger than the expected amount produced via charged particle-induced reactions at a cyclotron (Table 1). However, the reactor produced products are only of low specific activity except 171 Tm.

REFERENCE

1. Dmitriev PP. Radionuclide yield in reactions with protons, deuterons, alpha particles and helium-3. *Energoatomizdat*, Moscow, 1986.